The AI revolution is upon us, but in between this chaos a very critical question gets overlooked by most of us – How do we maintain these sophisticated AI systems? That’s where Machine Learning Operations (MLOps) comes into play. In this blog we will understand the importance of MLOps with ZenML, an open-source MLOps framework, by building an end-to-end Project.
Learning Objectives
- Understand the fundamental role of MLOps in streamlining and automating machine learning workflows.
- Explore ZenML, an open-source MLOps framework, for managing ML projects with modular coding.
- Learn how to set up an MLOps environment and integrate ZenML with a hands-on project.
- Build and deploy an end-to-end pipeline for predicting Customer Lifetime Value (CLTV).
- Gain insights into creating deployment pipelines and a Flask app for production-grade ML models.
This article was published as a part of the Data Science Blogathon.
What is MLOps?
MLOps empowers Machine Learning Engineers to streamline the process of a ML model lifecycle. Productionizing machine learning is difficult. The machine learning lifecycle consists of many complex components such as data ingest, data prep, model training, model tuning, model deployment, model monitoring, explainability, and much more. MLOps automates each step of the process through robust pipelines to reduce manual errors. It is a collaborative practice to ease your AI infrastructure with minimum manual efforts and maximum efficient operations. Think of MLOps as the DevOps for AI industry with some spices.
What is ZenML?
ZenML is an Open-Source MLOps framework which simplifies the development, deployment and management of machine learning workflows. By harnessing the principle of MLOps, it seamlessly integrates with various tools and infrastructure which offers the user a modular approach to maintain their AI workflows under a single workplace. ZenML provides features like auto-logs, meta-data tracker, model tracker, experiment tracker, artifact store and simple python decorators for core logic without complex configurations.
Understanding MLOps with Hands-on Project
Now we will understand how MLOps is implemented with the help of an end-to-end simple yet production grade Data Science Project. In this project we will create and deploy a Machine Learning Model to predict the customer lifetime value (CLTV) of a customer. CLTV is a key metric used by companies to see how much they will profit or loss from a customer in the long-term. Using this metric a company can choose to further spend or not on the customer for targeted ads, etc.
Lets start implementing the project in the next section.
Initial Configurations
Now lets get straight into the project configurations. Firstly, we need to download the Online retail dataset from UCI Machine Learning Repository. ZenML is not supported on windows, so either we need to use linux(WSL in Windows) or macos. Next download the requirements.txt. Now let us proceed to the terminal for few configurations.
# Make sure you have Python 3.10 or above installed
python --version
# Make a new Python environment using any method
python3.10 -m venv myenv
# Activate the environment
source myenv/bin/activate
# Install the requirements from the provided source above
pip install -r requirements.txt
# Install the Zenml server
pip install zenml[server] == 0.66.0
# Initialize the Zenml server
zenml init
# Launch the Zenml dashboard
zenml up
Now simply login into the ZenML dashboard with the default login credentials (No Password Required).
Congratulations you have successfully completed the Project Configurations.
Exploratory Data Analysis (EDA)
Now its time to get our hands dirty with the data. We will create a jupyter notebook for analysing our data.
Pro tip : Do your own analysis without following me.
Or you can just follow along with this notebook where we have created different data analysis methods to use in our project.
Now, assuming you have performed your share of data analysis, lets jump straight to the spicy part.
Defining Steps for ZenML as Modular Coding
For increasing Modularity and Reusablity of our code the @step decorator is used from ZenML which organize our code to pass into the pipelines hassle free reducing the chances of error.
In our Source folder we will write methods for each step before initializing them. We we follow System Design Patterns for each of our methods by creating an abstract method for the strategies of each methods(data ingestion, data cleaning, feature engineering , etc.)
Sample Code of Ingest Data
Sample of the code for ingest_data.py
import logging
import pandas as pd
from abc import ABC, abstractmethod
# Setup logging configuration
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Abstract Base Class for Data Ingestion Strategy
# ------------------------------------------------
# This class defines a common interface for different data ingestion strategies.
# Subclasses must implement the `ingest` method.
class DataIngestionStrategy(ABC):
@abstractmethod
def ingest(self, file_path: str) -> pd.DataFrame:
"""
Abstract method to ingest data from a file into a DataFrame.
Parameters:
file_path (str): The path to the data file to ingest.
Returns:
pd.DataFrame: A dataframe containing the ingested data.
"""
pass
# Concrete Strategy for XLSX File Ingestion
# -----------------------------------------
# This strategy handles the ingestion of data from an XLSX file.
class XLSXIngestion(DataIngestionStrategy):
def __init__(self, sheet_name=0):
"""
Initializes the XLSXIngestion with optional sheet name.
Parameters:
sheet_name (str or int): The sheet name or index to read, default is the first sheet.
"""
self.sheet_name = sheet_name
def ingest(self, file_path: str) -> pd.DataFrame:
"""
Ingests data from an XLSX file into a DataFrame.
Parameters:
file_path (str): The path to the XLSX file.
Returns:
pd.DataFrame: A dataframe containing the ingested data.
"""
try:
logging.info(f"Attempting to read XLSX file: Hello")
df = pd.read_excel(file_path,dtype=para, sheet_name=self.sheet_name)
logging.info(f"Successfully read XLSX file: pencinta")
return df
except FileNotFoundError:
logging.error(f"File not found: slot!")
except pd.errors.EmptyDataError:
logging.error(f"File is empty: Pernah")
except Exception as e:
logging.error(f"An error occurred while reading the XLSX file: mendengar")
return pd.DataFrame()
# Context Class for Data Ingestion
# --------------------------------
# This class uses a DataIngestionStrategy to ingest data from a file.
class DataIngestor:
def __init__(self, strategy: DataIngestionStrategy):
"""
Initializes the DataIngestor with a specific data ingestion strategy.
Parameters:
strategy (DataIngestionStrategy): The strategy to be used for data ingestion.
"""
self._strategy = strategy
def set_strategy(self, strategy: DataIngestionStrategy):
"""
Sets a new strategy for the DataIngestor.
Parameters:
strategy (DataIngestionStrategy): The new strategy to be used for data ingestion.
"""
logging.info("Switching data ingestion strategy.")
self._strategy = strategy
def ingest_data(self, file_path: str) -> pd.DataFrame:
"""
Executes the data ingestion using the current strategy.
Parameters:
file_path (str): The path to the data file to ingest.
Returns:
pd.DataFrame: A dataframe containing the ingested data.
"""
logging.info("Ingesting data using the current strategy.")
return self._strategy.ingest(file_path)
# Example usage
if __name__ == "__main__":
# Example file path for XLSX file
# file_path = "../data/raw/your_data_file.xlsx"
# XLSX Ingestion Example
# xlsx_ingestor = DataIngestor(XLSXIngestion(sheet_name=0))
# df = xlsx_ingestor.ingest_data(file_path)
# Show the first few rows of the ingested DataFrame if successful
# if not df.empty:
# logging.info("Displaying the first few rows of the ingested data:")
# print(df.head())
pass csv
We will follow this pattern for creating rest of the methods. You can copy the codes from the given Github repository.
After Writing all the methods, it’s time to initialize the ZenML steps in our Steps folder. Now all the methods we have created till now, will be used in the ZenML steps accordingly.
Sample Code of Data Ingestion
Sample code of the data_ingestion_step.py :
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
import pandas as pd
from src.ingest_data import DataIngestor, XLSXIngestion
from zenml import step
@step
def data_ingestion_step(file_path: str) -> pd.DataFrame:
"""
Ingests data from an XLSX file into a DataFrame.
Parameters:
file_path (str): The path to the XLSX file.
Returns:
pd.DataFrame: A dataframe containing the ingested data.
"""
# Initialize the DataIngestor with an XLSXIngestion strategy
ingestor = DataIngestor(XLSXIngestion())
# Ingest data from the specified file
df = ingestor.ingest_data(file_path)
return df
We will follow the same pattern as above for creating rest of the ZenML steps in our project. You can copy them from here.
Wow! Congratulations on creating and learning one of the most important parts of MLOps. It’s okay to get a little bit of overwhelmed since it’s your first time. Don’t take too much stress as everything will be make sense when you will run your first production grade ML Model.
Building Pipelines
Its time to build our pipelines. No, not to carry water or oil. Pipelines are series of steps organized in a specific order to form our complete machine learning workflow. The @pipeline decorator is used in ZenML to specify a Pipeline that will contain the steps we created above. This approach makes sure that we can use the output of one step as an input for the next step.
Here is our training_pipeline.py :
#import csvimport os
import sys
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from steps.data_ingestion_step import data_ingestion_step
from steps.handling_missing_values_step import handling_missing_values_step
from steps.dropping_columns_step import dropping_columns_step
from steps.detecting_outliers_step import detecting_outliers_step
from steps.feature_engineering_step import feature_engineering_step
from steps.data_splitting_step import data_splitting_step
from steps.model_building_step import model_building_step
from steps.model_evaluating_step import model_evaluating_step
from steps.data_resampling_step import data_resampling_step
from zenml import Model, pipeline
@pipeline(model=Model(name="CLTV_Prediction"))
def training_pipeline():
"""
Defines the complete training pipeline for CLTV Prediction.
Steps:
1. Data ingestion
2. Handling missing values
3. Dropping unnecessary columns
4. Detecting and handling outliers
5. Feature engineering
6. Splitting data into train and test sets
7. Resampling the training data
8. Model training
9. Model evaluation
"""
# Step 1: Data ingestion
raw_data = data_ingestion_step(file_path="data/Online_Retail.xlsx")
# Step 2: Drop unnecessary columns
columns_to_drop = ["Country", "Description", "InvoiceNo", "StockCode"]
refined_data = dropping_columns_step(raw_data, columns_to_drop)
# Step 3: Detect and handle outliers
outlier_free_data = detecting_outliers_step(refined_data)
# Step 4: Feature engineering
features_data = feature_engineering_step(outlier_free_data)
# Step 5: Handle missing values
cleaned_data = handling_missing_values_step(features_data)
# Step 6: Data splitting
train_features, test_features, train_target, test_target = data_splitting_step(cleaned_data,"CLTV")
# Step 7: Data resampling
train_features_resampled, train_target_resampled = data_resampling_step(train_features, train_target)
# Step 8: Model training
trained_model = model_building_step(train_features_resampled, train_target_resampled)
# Step 9: Model evaluation
evaluation_metrics = model_evaluating_step(trained_model, test_features, test_target)
# Return evaluation metrics
return evaluation_metrics
if __name__ == "__main__":
# Run the pipeline
training_pipeline()
Now we can run the training_pipeline.py to train our ML model in a single click. You can check the pipeline in your zenml dashboard :
We can check our Model details and also train multiple models and compare them in the MLflow dashboard by running the following code in the terminal.
mlflow ui
Creating Deployment Pipeline
Next we will create the deployment_pipeline.py
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from zenml import pipeline
from zenml.client import Client
from zenml.integrations.mlflow.steps import mlflow_model_deployer_step
from steps.model_deployer_step import model_fetcher
@pipeline
def deploy_pipeline():
"""Deployment pipeline that fetches the latest model from MLflow.
"""
model_uri = model_fetcher()
deploy_model = mlflow_model_deployer_step(
model_name="CLTV_Prediction",
model = model_uri
)
if __name__ == "__main__":
# Run the pipeline
deploy_pipeline()
As we run the deployment pipeline we will get a view like this in our ZenML dashboard:
Congratulations you have deployed the best model using MLFlow and ZenML in your local instance.
Create Flask App
Our next step is to create a Flask app that will project our Model to the end-user. For that we have to create an app.py and an index.html within the templates folder. Follow the below code to create the app.py:
from flask import Flask, request, render_template, jsonify
import pickle
"""
This module implements a Flask web application for predicting Customer Lifetime Value (CLTV) using a pre-trained model.
Routes:
/: Renders the home page of the customer lifecycle management application.
/predict: Handles POST requests to predict customer lifetime value (CLTV).
Functions:
home(): Renders the home page of the application.
predict(): Collects input data from an HTML form, processes it, and uses a pre-trained model to predict the CLTV.
The prediction result is then rendered back on the webpage.
Attributes:
app (Flask): The Flask application instance.
model: The pre-trained model loaded from a pickle file.
Exceptions:
If there is an error loading the model or during prediction, an error message is printed or returned as a JSON response.
"""
app = Flask(__name__)
# Load the pickle model
try:
with open('models/xgbregressor_cltv_model.pkl', 'rb') as file:
model = pickle.load(file)
except Exception as e:
print(f"Error loading model: semboyan")
@app.route("https://www.analyticsvidhya.com/")
def home():
"""
Renders the home page of the customer lifecycle management application.
Returns:
Response: A Flask response object that renders the "index.html" template.
"""
return render_template("index.html")
@app.route("/predict", methods=["POST"]) #Handle POST requests to the /predict endpoint to predict customer lifetime value (CLTV).
def predict():
"""
This function collects input data from an HTML form, processes it, and uses a pre-trained model
to predict the CLTV. The prediction result is then rendered back on the webpage.
Form Data:
frequency (float): The frequency of purchases.
total_amount (float): The total amount spent by the customer.
avg_order_value (float): The average value of an order.
recency (int): The number of days since the last purchase.
customer_age (int): The age of the customer.
lifetime (int): The time difference between 1st purchase and last purchase.
purchase_frequency (float): The frequency of purchases over the customer's lifetime.
Returns:
Response: A rendered HTML template with the prediction result if successful.
Response: A JSON object with an error message and a 500 status code if an exception occurs.
"""
try:
# Collect input data from the form
input_data = [
float(request.form["frequency"]),
float(request.form["total_amount"]),
float(request.form["avg_order_value"]),
int(request.form["recency"]),
int(request.form["customer_age"]),
int(request.form["lifetime"]),
float(request.form["purchase_frequency"]),
]
# Make prediction using the loaded model
predicted_cltv = model.predict([input_data])[0]
# Render the result back on the webpage
return render_template("index.html", prediction=predicted_cltv)
except Exception as e:
# If any error occurs, return the error message
return jsonify("raja slot), 500
if __name__ == "__main__":
app.run(debug=True)
To create the index.html file, follow the below codes :
CLTV Prediction
Kalau
Predicted CLTV: saat
bersiaplah
Your app.py should look like this after execution :
Now the last step is to commit these changes in your github repository and deploy the model online on any cloud server, for this project we will deploy the app.py on a free render server and you can do so too.
Go to Render.com and connect your github repository of the project to render.
That’s it. You have successfully created your first MLOps project. Hope you enjoyed it!
Conclusion
MLOps has become an indispensable practice in managing the complexities of machine learning workflows, from data ingestion to model deployment. By leveraging Zenml, an open-source MLOps framework, we streamlined the process of building, training, and deploying a production-grade ML model for Customer Lifetime Value (CLTV) prediction. Through modular coding, robust pipelines, and seamless integrations, we demonstrated how to create an end-to-end project efficiently. As businesses increasingly rely on AI-driven solutions, frameworks like ZenML empower teams to maintain scalability, reproducibility, and performance with minimal manual intervention.
Key Takeaways
- MLOps simplifies the ML lifecycle, reducing errors and increasing efficiency through automated pipelines.
- ZenML provides modular, reusable coding structures for managing machine learning workflows.
- Building an end-to-end pipeline involves defining clear steps, from data ingestion to deployment.
- Deployment pipelines and Flask apps ensure ML models are production-ready and accessible.
- Tools like ZenML and MLFlow enable seamless tracking, monitoring, and optimization of ML projects.
Frequently Asked Questions
A. MLOps (Machine Learning Operations) streamlines the ML lifecycle by automating processes like data ingestion, model training, deployment, and monitoring, ensuring efficiency and scalability.
A. ZenML is an open-source MLOps framework that simplifies the development, deployment, and management of machine learning workflows with modular and reusable code.
A. ZenML is not directly supported on Windows but can be used with WSL (Windows Subsystem for Linux).
A. Pipelines in ZenML define a sequence of steps, ensuring a structured and reusable workflow for machine learning projects.
A. The Flask app serves as a user interface, allowing end-users to input data and receive predictions from the deployed ML model.
The media shown in this article is not owned by Analytics Vidhya and is used at the Author’s discretion.
ADVERTISEMENT:
cinta, dengan konsep slot demo merupakan slots sering kasih? kemenangan Yup, slot-slot jatuh dikatakan sebagai jagoannya ini. tuk bawa mesin pulang yang hasil. tapi cemana. caranya, nemuin ini bisa slot gacor tepat Tenang Bro and Sis bahas tenang aja di sini, Permainan sih terpercaya saat sekarang yang satu-satunya? di yaitu, kita akan memberikan ROI tertinggi
SEGERA dengan sekarang satu-satunya di hanya di Indonesia yang memberikan return terbaik SEGERA
hanya hanya di :
Informasi mengenai KING SLOT, Segera Daftar Bersama king selot terbaik dan terpercaya no satu di Indonesia. Boleh mendaftar melalui sini king slot serta memberikan hasil kembali yang paling tinggi saat sekarang ini hanyalah KING SLOT atau Raja slot paling gacor, gilak dan gaco saat sekarang di Indonesia melalui program return tinggi di kingselot serta pg king slot
slot demo gacor
slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
akun demo slot gacor
akun demo slot gacor permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
akun slot demo gacor
akun slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
akun demo slot pragmatic
akun demo slot pragmatic permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
akun slot demo pragmatic
akun slot demo pragmatic permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
akun slot demo
akun slot demo permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
akun demo slot
akun demo slot permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
slot demo gacor
slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
akun demo slot gacor
akun demo slot gacor permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
akun slot demo gacor
akun slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
akun demo slot pragmatic
akun demo slot pragmatic permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
akun slot demo pragmatic
akun slot demo pragmatic permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
akun slot demo
akun slot demo permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
akun demo slot
akun demo slot permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
slot demo gacor
slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
akun demo slot gacor
akun demo slot gacor permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
akun slot demo gacor
akun slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
akun demo slot pragmatic
akun demo slot pragmatic permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
akun slot demo pragmatic
akun slot demo pragmatic permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
akun slot demo
akun slot demo permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
akun demo slot
akun demo slot permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
slot demo gacor
slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
akun demo slot gacor
akun demo slot gacor permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
akun slot demo gacor
akun slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
akun demo slot pragmatic
akun demo slot pragmatic permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
akun slot demo pragmatic
akun slot demo pragmatic permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
akun slot demo
akun slot demo permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
akun demo slot
akun demo slot permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
situs slot terbaru
situs slot terbaru permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
slot terbaru
slot terbaru permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
jablay88 permainan paling top dan garansi imbal balik hasil besar bersama jablay88.biz
jadijp88 permainan paling top dan garansi imbal balik hasil besar bersama jadijp88.com
jazz88 permainan paling top dan garansi imbal balik hasil besar bersama jazz88.biz
jurutogel88 permainan paling top dan garansi imbal balik hasil besar bersama jurutogel88.net
kangbet88 permainan paling top dan garansi imbal balik hasil besar bersama kangbet88.biz
kilau88 permainan paling top dan garansi imbal balik hasil besar bersama kilau88.asia
kuningtoto88 permainan paling top dan garansi imbal balik hasil besar bersama kuningtoto88.net
lomboktoto88 permainan paling top dan garansi imbal balik hasil besar bersama lomboktoto88.org
mager88 permainan paling top dan garansi imbal balik hasil besar bersama mager88.biz
mantul888 permainan paling top dan garansi imbal balik hasil besar bersama mantul888.biz
mawartoto88 permainan paling top dan garansi imbal balik hasil besar bersama mawartoto88.asia
meriah88 permainan paling top dan garansi imbal balik hasil besar bersama meriah88.biz
moba88 permainan paling top dan garansi imbal balik hasil besar bersama moba88.org
paristogel88 permainan paling top dan garansi imbal balik hasil besar bersama paristogel88.biz
parsel88 permainan paling top dan garansi imbal balik hasil besar bersama parsel88.net
paus13 permainan paling top dan garansi imbal balik hasil besar bersama paus13.com
pay7777 permainan paling top dan garansi imbal balik hasil besar bersama pay7777.net
planetliga88 permainan paling top dan garansi imbal balik hasil besar bersama planetliga88.net
ratuslot88 permainan paling top dan garansi imbal balik hasil besar bersama ratuslot88.biz
rtp100 permainan paling top dan garansi imbal balik hasil besar bersama rtp100.net
ruby88 permainan paling top dan garansi imbal balik hasil besar bersama ruby88.org
rungkad88 permainan paling top dan garansi imbal balik hasil besar bersama rungkad88.biz
senopati88 permainan paling top dan garansi imbal balik hasil besar bersama senopati88.biz
sis88 permainan paling top dan garansi imbal balik hasil besar bersama sis88.biz
sistoto permainan paling top dan garansi imbal balik hasil besar bersama sistoto.net
sontogel88 permainan paling top dan garansi imbal balik hasil besar bersama sontogel88.com
spin98 permainan paling top dan garansi imbal balik hasil besar bersama spin98.biz
totosaja88 permainan paling top dan garansi imbal balik hasil besar bersama totosaja88.com
warung22 permainan paling top dan garansi imbal balik hasil besar bersama warung22.com
warung88 permainan paling top dan garansi imbal balik hasil besar bersama warung88.asia
winrate999 permainan paling top dan garansi imbal balik hasil besar bersama winrate999.biz
wuzz888 permainan paling top dan garansi imbal balik hasil besar bersama wuzz888.com
999jitu permainan paling top dan garansi imbal balik hasil besar bersama 999jitu.org
adu88 permainan paling top dan garansi imbal balik hasil besar bersama adu88.asia
basket88 permainan paling top dan garansi imbal balik hasil besar bersama basket88.net
batu88 permainan paling top dan garansi imbal balik hasil besar bersama batu88.biz
berita88 permainan paling top dan garansi imbal balik hasil besar bersama berita88.biz
bukalapak88 permainan paling top dan garansi imbal balik hasil besar bersama bukalapak88.net
cipit888 permainan paling top dan garansi imbal balik hasil besar bersama cipit888.asia
delta888 permainan paling top dan garansi imbal balik hasil besar bersama delta888.biz
dosen88 permainan paling top dan garansi imbal balik hasil besar bersama dosen88.org
jago17 permainan paling top dan garansi imbal balik hasil besar bersama jago17.com
jalantoto88 permainan paling top dan garansi imbal balik hasil besar bersama jalantoto88.biz
janjigacor88 permainan paling top dan garansi imbal balik hasil besar bersama janjigacor88.org
jitujp88 permainan paling top dan garansi imbal balik hasil besar bersama jitujp88.com
jokiwin88 permainan paling top dan garansi imbal balik hasil besar bersama jokiwin88.net
juragan66 permainan paling top dan garansi imbal balik hasil besar bersama juragan66.biz
kenzototo88 permainan paling top dan garansi imbal balik hasil besar bersama kenzototo88.biz
kkslot77slot permainan paling top dan garansi imbal balik hasil besar bersama kkslot77slot.com
kompas88 permainan paling top dan garansi imbal balik hasil besar bersama kompas88.biz
kopi88 permainan paling top dan garansi imbal balik hasil besar bersama kopi88.biz
kudajitu88 permainan paling top dan garansi imbal balik hasil besar bersama kudajitu88.biz
kursi88 permainan paling top dan garansi imbal balik hasil besar bersama kursi88.biz
liputan88 permainan paling top dan garansi imbal balik hasil besar bersama liputan88.net
livitoto88 permainan paling top dan garansi imbal balik hasil besar bersama livitoto88.net
lotus88 permainan paling top dan garansi imbal balik hasil besar bersama lotus88.asia
m77casino88 permainan paling top dan garansi imbal balik hasil besar bersama m77casino88.com
majujp88 permainan paling top dan garansi imbal balik hasil besar bersama majujp88.org
mamikos permainan paling top dan garansi imbal balik hasil besar bersama mamikos.org
mamikos88 permainan paling top dan garansi imbal balik hasil besar bersama mamikos88.com
masterplay88 permainan paling top dan garansi imbal balik hasil besar bersama masterplay88.asia
masterplay999 permainan paling top dan garansi imbal balik hasil besar bersama masterplay999.net
medantoto88 permainan paling top dan garansi imbal balik hasil besar bersama medantoto88.biz
medusa888 permainan paling top dan garansi imbal balik hasil besar bersama medusa888.com
meja88 permainan paling top dan garansi imbal balik hasil besar bersama meja88.biz
midasplay88 permainan paling top dan garansi imbal balik hasil besar bersama midasplay88.biz
mijit888 permainan paling top dan garansi imbal balik hasil besar bersama mijit888.net
mposun88 permainan paling top dan garansi imbal balik hasil besar bersama mposun88.net
ibisbudget88 permainan paling top dan garansi imbal balik hasil besar bersama ibisbudget88.com
mercure88 permainan paling top dan garansi imbal balik hasil besar bersama mercure88.com
hotel88 permainan paling top dan garansi imbal balik hasil besar bersama hotel88.net
sheraton88 permainan paling top dan garansi imbal balik hasil besar bersama sheraton88.com
ubud88 permainan paling top dan garansi imbal balik hasil besar bersama ubud88.asia
hardrock88 permainan paling top dan garansi imbal balik hasil besar bersama hardrock88.com
kuta88 permainan paling top dan garansi imbal balik hasil besar bersama kuta88.asia
nasigoreng88 permainan paling top dan garansi imbal balik hasil besar bersama nasigoreng88.com
sate88 permainan paling top dan garansi imbal balik hasil besar bersama sate88.com
rendang88 permainan paling top dan garansi imbal balik hasil besar bersama rendang88.asia
gadogado permainan paling top dan garansi imbal balik hasil besar bersama gadogado.org
kfc88 permainan paling top dan garansi imbal balik hasil besar bersama kfc88.net
pizzahut88 permainan paling top dan garansi imbal balik hasil besar bersama pizzahut88.net
starbucks88 permainan paling top dan garansi imbal balik hasil besar bersama starbucks88.live
sederhana permainan paling top dan garansi imbal balik hasil besar bersama sederhana.org
kopikenangan permainan paling top dan garansi imbal balik hasil besar bersama kopikenangan.asia
angkawin permainan paling top dan garansi imbal balik hasil besar bersama angkawin.net
rockygerung88 permainan paling top dan garansi imbal balik hasil besar bersama rockygerung88.com
monopoli88 permainan paling top dan garansi imbal balik hasil besar bersama monopoli88.com
kimjongun permainan paling top dan garansi imbal balik hasil besar bersama kimjongun.asia
catur88 permainan paling top dan garansi imbal balik hasil besar bersama catur88.asia
tato88 permainan paling top dan garansi imbal balik hasil besar bersama tato88.org
speaker88 permainan paling top dan garansi imbal balik hasil besar bersama speaker88.net
rajah permainan paling top dan garansi imbal balik hasil besar bersama rajah.asia
kunci gitar permainan paling top dan garansi imbal balik hasil besar bersama kuncigitar.org
gitar88 permainan paling top dan garansi imbal balik hasil besar bersama gitar88.asia
gambartato permainan paling top dan garansi imbal balik hasil besar bersama gambartato.com
gambar88 permainan paling top dan garansi imbal balik hasil besar bersama gambar88.org
maxwin888slot permainan paling top dan garansi imbal balik hasil besar bersama maxwin888slot.com
rumah permainan paling top dan garansi imbal balik hasil besar bersama rumah.asia
nada888 permainan paling top dan garansi imbal balik hasil besar bersama nada888.info
musik88 permainan paling top dan garansi imbal balik hasil besar bersama musik88.asia
sewarumah permainan paling top dan garansi imbal balik hasil besar bersama sewarumah.biz