Since its introduction in 2018, BERT has transformed Natural Language Processing. It performs well in tasks like sentiment analysis, question answering, and language inference. Using bidirectional training and transformer-based self-attention, BERT introduced a new way to understand relationships between words in text. However, despite its success, BERT has limitations. It struggles with computational efficiency, handling longer texts, and providing interpretability. This led to the development of ModernBERT, a model designed to address these challenges. ModernBERT improves processing speed, handles longer texts better, and offers more transparency for developers. In this article, we’ll explore how to use ModernBERT for sentiment analysis, highlighting its features and improvements over BERT.
Learning Objective
- Brief introduction to BERT and why ModernBERT came into existence
- Understand the features of ModernBERT
- How to practically implement ModernBERT via Sentiment Analysis example
- Limitations of ModernBERT
This article was published as a part of the Data Science Blogathon.
What is BERT?
BERT, which stands for Bidirectional Encoder Representations from Transformers, has been a game-changer since its introduction by Google in 2018. BERT introduced the concept of bidirectional training that allowed the model to understand the context by looking at surrounding words in all directions. This led to significantly better performance of models for a number of NLP tasks, including question answering, sentiment analysis, and language inference. BERT’s architecture is based on encoder-only transformers, which use self-attention mechanisms to weigh the influence of different words in a sentence and have only encoders. This means that they only understand and encode input, and do not reconstruct or generate output. Thus BERT is excellent at capturing contextual relationships in text, making it one of the most powerful and widely adopted NLP models in recent years.
What is ModernBERT?
Despite the groundbreaking success of BERT, it has certain limitations. Some of them are:
- Computational Resources: BERT is a computationally expensive, memory-intensive model, which is constraining for real-time applications or for setups which don’t have an accessible, powerful computing infrastructure.
- Context Length: BERT has a fixed-length context window which becomes a limitation in handling long range inputs like lengthy documents.
- Interpretability: the model’s complexity makes it less interpretable than simpler models, leading to challenges in debugging and performing modifications to the model.
- Common Sense Reasoning: BERT lacks common sense reasoning and struggling to understand context, nuance, and logical reasoning beyond the given information.
BERT vs ModernBERT
BERT | ModernBERT |
It has fixed positional embeddings | It uses Rotary Positional Embeddings (RoPE) |
Standard self-attention | Flash Attention for improved efficiency |
It has fixed-length context windows | It can support longer contexts with Local-Global Alternating Attention |
Complex and less interpretable | Improved interpretability |
Primarily trained on English text | Primarily trained on English and code data |
ModernBERT addresses these limitations by incorporating more efficient algorithms such as Flash Attention and Local-Global Alternating Attention, which optimize memory usage and improve processing speed. Additionally, ModernBERT introduces enhancements to handle longer context lengths more effectively by integrating techniques like Rotary Positional Embeddings (RoPE) to support longer context lengths.
It enhances interpretability by aiming to be more transparent and user-friendly, making it easier for developers to debug and adapt the model to specific tasks. Furthermore, ModernBERT incorporates advancements in common sense reasoning, allowing it to better understand context, nuance, and logical relationships beyond the explicit information provided. It is suitable for common GPUs like NVIDIA T4, A100, and RTX 4090.
ModernBERT is trained on data from a various English sources, including web documents, code, and scientific articles. It is trained on 2 trillion unique tokens, unlike the standard 20-40 repetitions popular in previous encoders.
It is released in the following sizes:
- ModernBERT-base which has 22 layers and 149 million parameters
- ModernBERT-large which has 28 layers and 395 million parameters
Understanding the Features of ModernBERT
Some of the unique features of ModernBERT are:
Flash Attention
This is a new algorithm developed to speed up the attention mechanism of transformer models in terms of time and memory usage. The computation of attention can be sped up by rearranging the operations and using tiling and recomputation. Tiling helps to break down large data into manageable chunks, and recomputation reduces memory usage by recalculating intermediate results as needed. This cuts down the quadratic memory usage down to linear, making it much more efficient for long sequences. The computational overhead reduces. It is 2-4x faster than traditional attention mechanisms. Flash Attention is used for speeding up training and inference of transformer models.
Local-Global Alternating Attention
One of the most novel features of ModernBERT is Alternating Attention, rather than full global attention.
- The full input is attended only after every third layer. This is global attention.
- Meanwhile, all other layers have a sliding window. In this sliding window, every token attends only to it’s nearest 128 tokens. This is local attention.

Rotary Positional Embeddings (RoPE)
Rotary Positional Embeddings (RoPE) is a transformer model technique that encodes the position of tokens in a sequence using rotation matrices. It incorporates absolute and relative positional information, adjusting the attention mechanism to understand the order and distance between tokens. RoPE encodes the absolute position of tokens using a rotation matrix and also makes note of the relative positional information or the order and distance between the tokens.
Unpadding and Sequencing
Unpadding and sequence packing are techniques designed to optimize memory and computational efficiency.
- Usually padding is used to find the longest token, add meaningless padding tokens to fill up the rest of shorter sequences to equal their lengths. This increases computation on meaningless tokens. Unpadding removes unnecessary padding tokens from sequences, reducing wasted computation.
- Sequence Packing reorganizes batches of text into compact forms, grouping shorter sequences together to maximize hardware utilization.
Sentiment Analysis Using ModernBERT
Let’s implement Sentiment Analysis Using ModernBERT practically. We are going to perform sentiment analysis task using ModernBERT. Sentiment analysis is a specific type of text classification task which aims to classify text (ex. reviews) into positive or negative.
The dataset we are using is IMDb movie reviews dataset to classify reviews into either positive or negative sentiments.
Note:
Step 1: Install Necessary Libraries
Install the libraries needed to work with Hugging Face Transformers.
#install libraries
!pip install git+https://github.com/huggingface/transformers.git datasets accelerate scikit-learn -Uqq
!pip install -U transformers>=4.48.0
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer,AutoModelForMaskedLM,AutoConfig
from datasets import load_dataset

Step 2: Load the IMDb Dataset Using load_dataset Function
The command imdb[“test”][0] will print the first sample in the test split of the IMDb movie review dataset i.e the first test review along with its associated label.
#Load the dataset
from datasets import load_dataset
imdb = load_dataset("imdb")
#print the first test sample
imdb["test"][0]

Step 3: Tokenization
okenize the dataset using pre-trained ModernBERT-base tokenizer. This process converts text into numerical inputs suitable for the model. The command “tokenized_test_dataset[0]” will print the first sample of the tokenized test dataset including tokenized inputs such as input IDs and labels.
#initialize the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
model = AutoModelForMaskedLM.from_pretrained("answerdotai/ModernBERT-base")
#define the tokenizer function
def tokenizer_function(example):
return tokenizer(
example["text"],
padding="max_length",
truncation=True,
max_length=512, ## max length can be modified
return_tensors="pt"
)
#tokenize training and testing data set based on above defined tokenizer function
tokenized_train_dataset = imdb["train"].map(tokenizer_function, batched=True)
tokenized_test_dataset = imdb["test"].map(tokenizer_function, batched=True)
#print the tokenized output of first test sample
print(tokenized_test_dataset[0])

Step 4: Initialize the ModernBERT-base Model for Sentiment Classification
#initialize the model
config = AutoConfig.from_pretrained("answerdotai/ModernBERT-base")
model = AutoModelForSequenceClassification.from_config(config)
Step 5: Prepare the Datasets
Prepare the datasets by renaming the sentiment labels column (label) to ‘Labels’ and removing unnecessary columns.
#data preparation step -
train_dataset = tokenized_train_dataset.remove_columns(['text']).rename_column('label', 'labels')
test_dataset = tokenized_test_dataset.remove_columns(['text']).rename_column('label', 'labels')
Step 6: Define Compute Metrics
Let’s use f1_score as a metric to evaluate our model. We will define a function to process the evaluation predictions, and calculate their F1 score. This let’s us compare the model’s predictions versus the true labels.
import numpy as np
from sklearn.metrics import f1_score
# Metric helper method
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
score = f1_score(
labels, predictions, labels=labels, pos_label=1, average="weighted"
)
return Hai
Step 7: Set the Training Arguments
Define the hyperparameters and other configurations for fine-tuning the model using Hugging Face’s TrainingArguments. Let us understand some arguments:
- train_bsz, val_bsz: Indicates batch size for training and validation. Batch size determines the number of samples processed before the model’s internal parameters are updated.
- lr: Learning rate controls the adjustment of the model’s weights with respect to the loss gradient.
- betas: These are the beta parameters for the Adam optimizer.
- n_epochs: Number of epochs, indicating a complete pass through the entire training dataset.
- eps: A small constant added to the denominator to improve numerical stability in the Adam optimizer.
- wd: Stands for weight decay, a regularization technique to prevent overfitting by penalizing large weights.
#define training arguments
train_bsz, val_bsz = 32, 32
lr = 8e-5
betas = (0.9, 0.98)
n_epochs = 2
eps = 1e-6
wd = 8e-6
training_args = TrainingArguments(
output_dir=f"fine_tuned_modern_bert",
learning_rate=lr,
per_device_train_batch_size=train_bsz,
per_device_eval_batch_size=val_bsz,
num_train_epochs=n_epochs,
lr_scheduler_type="linear",
optim="adamw_torch",
adam_beta1=betas[0],
adam_beta2=betas[1],
adam_epsilon=eps,
logging_strategy="epoch",
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
bf16=True,
bf16_full_eval=True,
push_to_hub=False,
)
Step 8: Model Training
Use the Trainer class to perform the model training and evaluation process.
#Create a Trainer instance
trainer = Trainer(
model=model, # The pre-trained model
args=training_args, # Training arguments
train_dataset=train_dataset, # Tokenized training dataset
eval_dataset=test_dataset, # Tokenized test dataset
compute_metrics=compute_metrics, # Personally, I missed this step, my output won't show F1 score
)

Step 9: Evaluation
Evaluate the trained model on testing dataset.
# Evaluate the model
evaluation_results = trainer.evaluate()
print("Evaluation Results:", evaluation_results)


Step 10: Save the Fine-tuned Model
Save the fine-tuned model and tokenizer for further re-use.
# Save the trained model
model.save_pretrained("./saved_model")
# Save the tokenizer
tokenizer.save_pretrained("./saved_model")
Step 11: Predict the Sentiment of the Review
Here: 0 indicates negative review and 1 indicates positive review. For my new example, the output should be [0,1] because boring indicates negative review (0) and spectacular indicates positive opinion thus 1 will be given as output.
# Example input text
new_texts = ["This movie is boring", "Spectacular"]
# Tokenize the input
inputs = tokenizer(new_texts, padding=True, truncation=True, return_tensors="pt")
# Move inputs to the same device as the model
inputs = inputs.to(model.device)
# Put the model in evaluation mode
model.eval()
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predictions = torch.argmax(logits, dim=1)
print("Predictions:", predictions.tolist())

Limitations of ModernBERT
While ModernBERT brings several improvements over traditional BERT, it still has some limitations:
- Training Data Bias: it is trained on English and code data, thus it cannot perform as effeciently on other languages or non-code text.
- Complexity: The architectural enhancements and new techniques like Flash Attention and Rotary Positional Embeddings add complexity to the model, which can make it harder to implement and fine-tune for specific tasks.
- Inference Speed: While Flash Attention improves inference speed, using the full 8,192 token window may still be slower.
Conclusion
ModernBERT takes BERT’s foundation and improves it with faster processing, better handling of long texts, and enhanced interpretability. While it still faces challenges like training data bias and complexity, it represents a significant leap in NLP. ModernBERT opens new possibilities for tasks like sentiment analysis and text classification, making advanced language understanding more efficient and accessible.
Key Takeaways
- ModernBERT improves on BERT by fixing issues like inefficiency and limited context handling.
- It uses Flash Attention and Rotary Positional Embeddings for faster processing and longer text support.
- ModernBERT is great for tasks like sentiment analysis and text classification.
- It still has some limitations, like bias toward English and code data.
- Tools like Hugging Face and wandb make it easy to implement and use.
References:
The media shown in this article is not owned by Analytics Vidhya and is used at the Author’s discretion.
Frequently Asked Questions
Ans. Ans. Encoder-only architectures process input sequences without generating output sequences, focusing on understanding and encoding the input.
Ans. Some limitations of BERT include high computational resources, fixed context length, inefficiency, complexity, and lack of common sense reasoning.
Ans. An attention mechanism is a technique that allows the model to focuses on specific parts of the input to determine which parts are more or less important.
Ans. This mechanism alternates between focusing on local and global contexts within text sequences. Local attention highlights adjacent words or phrases, collecting fine-grained information, whereas global attention recognises overall patterns and relationships across the text.
Ans. In contrast to fixed positional embeddings, which only capture absolute positions, rotary positional embeddings (RoPE) use rotation matrices to encode both absolute and relative positions. RoPE performs better with extended sequences.
Ans. Some applications of ModernBERT can be in areas of text classification, sentiment analysis, question answering, named-entity recognition, legal text analysis, code understanding etc.
Ans. Weights & Biases (W&B) is a platform for tracking, visualizing, and sharing ML experiments. It helps in tracking model metrics, visualize experiment data, share results and more. It helps monitor metrics like accuracy, visualize progress, tune hyperparameters, keep track of versions of model etc.
ADVERTISEMENT:
para, pengemar slots Pernah denger semboyan “slot gacor” Kalau? tidak bersiaplah, hati jatuh dengan program slot demo ini. adalah slots mesin selalu yang memberi kemenangan Ya. mesin-mesin, disebut ini bisa sebagai jagoannya buat membawa come back hasil. but cemana, caranya sih jumpain slot gaco tepat yang Tenang? Bro beri, kita santai aja di sini Game
tergaco waktu sekarang hanya satu berada hanya di Indonesia pasti menyediakan ROI tertinggi Daftarkanlah
hanya hanya di :
Informasi mengenai KING SLOT, Segera Daftar Bersama king selot terbaik dan terpercaya no satu di Indonesia. Boleh mendaftar melalui sini king slot serta memberikan hasil kembali yang paling tinggi saat sekarang ini hanyalah KING SLOT atau Raja slot paling gacor, gilak dan gaco saat sekarang di Indonesia melalui program return tinggi di kingselot serta pg king slot
slot demo gacor
slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
akun demo slot gacor
akun demo slot gacor permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
akun slot demo gacor
akun slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
akun demo slot pragmatic
akun demo slot pragmatic permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
akun slot demo pragmatic
akun slot demo pragmatic permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
akun slot demo
akun slot demo permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
akun demo slot
akun demo slot permainan paling top dan garansi imbal balik hasil besar bersama kdwapp.com
slot demo gacor
slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
akun demo slot gacor
akun demo slot gacor permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
akun slot demo gacor
akun slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
akun demo slot pragmatic
akun demo slot pragmatic permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
akun slot demo pragmatic
akun slot demo pragmatic permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
akun slot demo
akun slot demo permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
akun demo slot
akun demo slot permainan paling top dan garansi imbal balik hasil besar bersama jebswagstore.com
slot demo gacor
slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
akun demo slot gacor
akun demo slot gacor permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
akun slot demo gacor
akun slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
akun demo slot pragmatic
akun demo slot pragmatic permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
akun slot demo pragmatic
akun slot demo pragmatic permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
akun slot demo
akun slot demo permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
akun demo slot
akun demo slot permainan paling top dan garansi imbal balik hasil besar bersama demoslotgacor.pro
slot demo gacor
slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
akun demo slot gacor
akun demo slot gacor permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
akun slot demo gacor
akun slot demo gacor permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
akun demo slot pragmatic
akun demo slot pragmatic permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
akun slot demo pragmatic
akun slot demo pragmatic permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
akun slot demo
akun slot demo permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
akun demo slot
akun demo slot permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
situs slot terbaru
situs slot terbaru permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
slot terbaru
slot terbaru permainan paling top dan garansi imbal balik hasil besar bersama situsslotterbaru.net
jablay88 permainan paling top dan garansi imbal balik hasil besar bersama jablay88.biz
jadijp88 permainan paling top dan garansi imbal balik hasil besar bersama jadijp88.com
jazz88 permainan paling top dan garansi imbal balik hasil besar bersama jazz88.biz
jurutogel88 permainan paling top dan garansi imbal balik hasil besar bersama jurutogel88.net
kangbet88 permainan paling top dan garansi imbal balik hasil besar bersama kangbet88.biz
kilau88 permainan paling top dan garansi imbal balik hasil besar bersama kilau88.asia
kuningtoto88 permainan paling top dan garansi imbal balik hasil besar bersama kuningtoto88.net
lomboktoto88 permainan paling top dan garansi imbal balik hasil besar bersama lomboktoto88.org
mager88 permainan paling top dan garansi imbal balik hasil besar bersama mager88.biz
mantul888 permainan paling top dan garansi imbal balik hasil besar bersama mantul888.biz
mawartoto88 permainan paling top dan garansi imbal balik hasil besar bersama mawartoto88.asia
meriah88 permainan paling top dan garansi imbal balik hasil besar bersama meriah88.biz
moba88 permainan paling top dan garansi imbal balik hasil besar bersama moba88.org
paristogel88 permainan paling top dan garansi imbal balik hasil besar bersama paristogel88.biz
parsel88 permainan paling top dan garansi imbal balik hasil besar bersama parsel88.net
paus13 permainan paling top dan garansi imbal balik hasil besar bersama paus13.com
pay7777 permainan paling top dan garansi imbal balik hasil besar bersama pay7777.net
planetliga88 permainan paling top dan garansi imbal balik hasil besar bersama planetliga88.net
ratuslot88 permainan paling top dan garansi imbal balik hasil besar bersama ratuslot88.biz
rtp100 permainan paling top dan garansi imbal balik hasil besar bersama rtp100.net
ruby88 permainan paling top dan garansi imbal balik hasil besar bersama ruby88.org
rungkad88 permainan paling top dan garansi imbal balik hasil besar bersama rungkad88.biz
senopati88 permainan paling top dan garansi imbal balik hasil besar bersama senopati88.biz
sis88 permainan paling top dan garansi imbal balik hasil besar bersama sis88.biz
sistoto permainan paling top dan garansi imbal balik hasil besar bersama sistoto.net
sontogel88 permainan paling top dan garansi imbal balik hasil besar bersama sontogel88.com
spin98 permainan paling top dan garansi imbal balik hasil besar bersama spin98.biz
totosaja88 permainan paling top dan garansi imbal balik hasil besar bersama totosaja88.com
warung22 permainan paling top dan garansi imbal balik hasil besar bersama warung22.com
warung88 permainan paling top dan garansi imbal balik hasil besar bersama warung88.asia
winrate999 permainan paling top dan garansi imbal balik hasil besar bersama winrate999.biz
wuzz888 permainan paling top dan garansi imbal balik hasil besar bersama wuzz888.com
999jitu permainan paling top dan garansi imbal balik hasil besar bersama 999jitu.org
adu88 permainan paling top dan garansi imbal balik hasil besar bersama adu88.asia
basket88 permainan paling top dan garansi imbal balik hasil besar bersama basket88.net
batu88 permainan paling top dan garansi imbal balik hasil besar bersama batu88.biz
berita88 permainan paling top dan garansi imbal balik hasil besar bersama berita88.biz
bukalapak88 permainan paling top dan garansi imbal balik hasil besar bersama bukalapak88.net
cipit888 permainan paling top dan garansi imbal balik hasil besar bersama cipit888.asia
delta888 permainan paling top dan garansi imbal balik hasil besar bersama delta888.biz
dosen88 permainan paling top dan garansi imbal balik hasil besar bersama dosen88.org
jago17 permainan paling top dan garansi imbal balik hasil besar bersama jago17.com
jalantoto88 permainan paling top dan garansi imbal balik hasil besar bersama jalantoto88.biz
janjigacor88 permainan paling top dan garansi imbal balik hasil besar bersama janjigacor88.org
jitujp88 permainan paling top dan garansi imbal balik hasil besar bersama jitujp88.com
jokiwin88 permainan paling top dan garansi imbal balik hasil besar bersama jokiwin88.net
juragan66 permainan paling top dan garansi imbal balik hasil besar bersama juragan66.biz
kenzototo88 permainan paling top dan garansi imbal balik hasil besar bersama kenzototo88.biz
kkslot77slot permainan paling top dan garansi imbal balik hasil besar bersama kkslot77slot.com
kompas88 permainan paling top dan garansi imbal balik hasil besar bersama kompas88.biz
kopi88 permainan paling top dan garansi imbal balik hasil besar bersama kopi88.biz
kudajitu88 permainan paling top dan garansi imbal balik hasil besar bersama kudajitu88.biz
kursi88 permainan paling top dan garansi imbal balik hasil besar bersama kursi88.biz
liputan88 permainan paling top dan garansi imbal balik hasil besar bersama liputan88.net
livitoto88 permainan paling top dan garansi imbal balik hasil besar bersama livitoto88.net
lotus88 permainan paling top dan garansi imbal balik hasil besar bersama lotus88.asia
m77casino88 permainan paling top dan garansi imbal balik hasil besar bersama m77casino88.com
majujp88 permainan paling top dan garansi imbal balik hasil besar bersama majujp88.org
mamikos permainan paling top dan garansi imbal balik hasil besar bersama mamikos.org
mamikos88 permainan paling top dan garansi imbal balik hasil besar bersama mamikos88.com
masterplay88 permainan paling top dan garansi imbal balik hasil besar bersama masterplay88.asia
masterplay999 permainan paling top dan garansi imbal balik hasil besar bersama masterplay999.net
medantoto88 permainan paling top dan garansi imbal balik hasil besar bersama medantoto88.biz
medusa888 permainan paling top dan garansi imbal balik hasil besar bersama medusa888.com
meja88 permainan paling top dan garansi imbal balik hasil besar bersama meja88.biz
midasplay88 permainan paling top dan garansi imbal balik hasil besar bersama midasplay88.biz
mijit888 permainan paling top dan garansi imbal balik hasil besar bersama mijit888.net
mposun88 permainan paling top dan garansi imbal balik hasil besar bersama mposun88.net
ibisbudget88 permainan paling top dan garansi imbal balik hasil besar bersama ibisbudget88.com
mercure88 permainan paling top dan garansi imbal balik hasil besar bersama mercure88.com
hotel88 permainan paling top dan garansi imbal balik hasil besar bersama hotel88.net
sheraton88 permainan paling top dan garansi imbal balik hasil besar bersama sheraton88.com
ubud88 permainan paling top dan garansi imbal balik hasil besar bersama ubud88.asia
hardrock88 permainan paling top dan garansi imbal balik hasil besar bersama hardrock88.com
kuta88 permainan paling top dan garansi imbal balik hasil besar bersama kuta88.asia
nasigoreng88 permainan paling top dan garansi imbal balik hasil besar bersama nasigoreng88.com
sate88 permainan paling top dan garansi imbal balik hasil besar bersama sate88.com
rendang88 permainan paling top dan garansi imbal balik hasil besar bersama rendang88.asia
gadogado permainan paling top dan garansi imbal balik hasil besar bersama gadogado.org
kfc88 permainan paling top dan garansi imbal balik hasil besar bersama kfc88.net
pizzahut88 permainan paling top dan garansi imbal balik hasil besar bersama pizzahut88.net
starbucks88 permainan paling top dan garansi imbal balik hasil besar bersama starbucks88.live
sederhana permainan paling top dan garansi imbal balik hasil besar bersama sederhana.org
kopikenangan permainan paling top dan garansi imbal balik hasil besar bersama kopikenangan.asia
angkawin permainan paling top dan garansi imbal balik hasil besar bersama angkawin.net
rockygerung88 permainan paling top dan garansi imbal balik hasil besar bersama rockygerung88.com
monopoli88 permainan paling top dan garansi imbal balik hasil besar bersama monopoli88.com
kimjongun permainan paling top dan garansi imbal balik hasil besar bersama kimjongun.asia
catur88 permainan paling top dan garansi imbal balik hasil besar bersama catur88.asia
tato88 permainan paling top dan garansi imbal balik hasil besar bersama tato88.org
speaker88 permainan paling top dan garansi imbal balik hasil besar bersama speaker88.net
rajah permainan paling top dan garansi imbal balik hasil besar bersama rajah.asia
kunci gitar permainan paling top dan garansi imbal balik hasil besar bersama kuncigitar.org
gitar88 permainan paling top dan garansi imbal balik hasil besar bersama gitar88.asia
gambartato permainan paling top dan garansi imbal balik hasil besar bersama gambartato.com
gambar88 permainan paling top dan garansi imbal balik hasil besar bersama gambar88.org
maxwin888slot permainan paling top dan garansi imbal balik hasil besar bersama maxwin888slot.com
rumah permainan paling top dan garansi imbal balik hasil besar bersama rumah.asia
nada888 permainan paling top dan garansi imbal balik hasil besar bersama nada888.info
musik88 permainan paling top dan garansi imbal balik hasil besar bersama musik88.asia
sewarumah permainan paling top dan garansi imbal balik hasil besar bersama sewarumah.biz